If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-16x-16=0
a = 6; b = -16; c = -16;
Δ = b2-4ac
Δ = -162-4·6·(-16)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{10}}{2*6}=\frac{16-8\sqrt{10}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{10}}{2*6}=\frac{16+8\sqrt{10}}{12} $
| 2x/5+4/x=13 | | n=28=50 | | 3-17d=19-18d | | (4x)+(x-5)=90 | | 8=4h-8 | | 3x2-8x+16=0 | | x/6.5=-1.50 | | 4x-x=3,6 | | -49x-20=-49-56x | | -8t+14=-20-9t+3t | | -2x+4=2(4x-3(-3(-8+4x) | | 2+18z=20z | | x-(x*(20/100)=50700 | | -8j+6=6-3j-5 | | 4+1+8k=4=k-1 | | 8=4h-9 | | 3x-7=3x+10 | | x+4=122 | | p/6=p+3/10 | | 10+14s-13=13+13s | | 5(3x-2)+12x=-2 | | -5+t/2=24 | | 3x2-6x=29 | | 4x–12–2x+16=24 | | 3x–1+x–5x=1 | | 2/5f=124 | | 6+4x=12-2x | | 8x=14=-58 | | 17x-8-(2x+5)=9x-2 | | 4/x+2=5 | | 13r-18=11r+14 | | 1/2x-2=4/3x+1 |